Regulation of actin-Spectrin cytoskeleton by ICA69 at the Drosophila neuromuscular junction
نویسندگان
چکیده
ARTICLE HISTORY Received 19 July 2017 Revised 12 September 2017 Accepted 13 September 2017 ABSTRACT Bin-Amphiphysin-Rvs (BAR) domain containing proteins with their membrane deforming properties have emerged as key players in shaping up neuronal morphology and regulating cytoskeletal dynamics. However, the in vivo contexts in which BAR-domain proteins integrate membrane dynamics with cytoskeletal rearrangements remain poorly understood. Recently, we identified islet cell autoantigen 69 kDa as one of the N-BAR-domain containing proteins which regulate synaptic development and organization at the Drosophila neuromuscular junction. ICA69 genetically functions downstream of Rab2 to regulate synapse morphology. We found that ICA69 alters Spectrin level at the Drosophila NMJ, and redistributes actin regulatory proteins in cultured cells suggesting that ICA69 may regulate NMJ organization by regulating actin-Spectrin cytoskeleton. We propose a model in which ICA69 genetically interact with components of actin regulatory proteins for cytoskeleton dynamics to regulate NMJ development and synapse organization.
منابع مشابه
Postsynaptic actin regulates active zone spacing and glutamate receptor apposition at the Drosophila neuromuscular junction.
Synaptic communication requires precise alignment of presynaptic active zones with postsynaptic receptors to enable rapid and efficient neurotransmitter release. How transsynaptic signaling between connected partners organizes this synaptic apparatus is poorly understood. To further define the mechanisms that mediate synapse assembly, we carried out a chemical mutagenesis screen in Drosophila t...
متن کاملPhospho-regulated Drosophila adducin is a determinant of synaptic plasticity in a complex with Dlg and PIP2 at the larval neuromuscular junction
Adducin is a ubiquitously expressed actin- and spectrin-binding protein involved in cytoskeleton organization, and is regulated through phosphorylation of the myristoylated alanine-rich C-terminal kinase (MARCKS)-homology domain by protein kinase C (PKC). We have previously shown that the Drosophila adducin, Hu-li tai shao (Hts), plays a role in larval neuromuscular junction (NMJ) growth. Here,...
متن کاملPresynaptic Spectrin Is Essential for Synapse Stabilization
BACKGROUND Precise neural circuitry is established and maintained through a regulated balance of synapse stabilization and disassembly. Currently, little is known about the molecular mechanisms that specify synapse stability versus disassembly. RESULTS Here, we demonstrate that presynaptic spectrin is an essential scaffold that is required to maintain synapse stability at the Drosophila neuro...
متن کاملA postsynaptic Spectrin scaffold defines active zone size, spacing, and efficacy at the Drosophila neuromuscular junction
Synaptic connections are established with characteristic, cell type-specific size and spacing. In this study, we document a role for the postsynaptic Spectrin skeleton in this process. We use transgenic double-stranded RNA to selectively eliminate alpha-Spectrin, beta-Spectrin, or Ankyrin. In the absence of postsynaptic alpha- or beta-Spectrin, active zone size is increased and spacing is pertu...
متن کاملDrosophila Ankyrin 2 Is Required for Synaptic Stability
Synaptic connections are stabilized through transsynaptic adhesion complexes that are anchored in the underlying cytoskeleton. The Drosophila neuromuscular junction (NMJs) serves as a model system to unravel genes required for the structural remodeling of synapses. In a mutagenesis screen for regulators of synaptic stability, we recovered mutations in Drosophila ankyrin 2 (ank2) affecting two g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2018